Aminoglycoside Pharmacokinetics and Optimal Once Daily Dosing in Burn Patients: A Prospective Study

Scott E. Walker \(^1\) BSc, PhM, ACPR, MSc, PhM, FCSHP, Winnie Seto \(^2\) BSc, PhM, PharmD, MSc, Andrew Simon \(^3\) MD, MP, FRCPC, Robert F. Stucki \(^4\) MD, FRCP, Marc Josse\(^5\) MD, PhD, PABC, FCSCHM, FCSHCP

\(^{1}\) Sunnybrook Health Sciences Centre (SHSC), Department of Pharmacy, \(^{2}\) University of Toronto, Leslie Dan Faculty of Pharmacy, \(^{3}\) Division of Infectious Diseases, \(^{4}\) Sunnybrook Research Institute; \(^{5}\) Hospital for Sick Children (HSC), Department of Pharmacy, \(^{6}\) University of Toronto, Faculty of Medicine, \(^{7}\) HSC, Ross Tilley Burn Centre

Underwritten by: Master of Science Candidate working under supervision of Sandra Walker at time of study; "Senior Author" sequence determines credit to authors

BACKGROUND

• Adequate dosing of aminoglycosides in burn injury patients is challenging due to the physiologic changes associated with burn injury that affect the pharmacokinetics of antibiotics.

• Burn injury patients are at increased risk of infection due to the breach in the natural skin barrier and concomitant suppression of both the cellular and innate immune system.

• Burn wound-induced edema is a major cause of mortality and morbidity in burn patients, and Pseudomonas aeruginosa is commonly pathogenic.

• All the Ross Tilley burn centre, Ontario’s largest burn unit, Pseudomonas aeruginosa susceptibility was found to be highest with tobramycin.

• Appropriate empiric aminoglycoside dosing in burn injury patients is essential to maximize the probability of achieving early pharmacodynamic/pharmacokinetic targets to optimize antibacterial activity and successful clinical outcome.

RATIONAL

• Once daily aminoglycoside (ODA) dosing is an attractive dosing modality because it optimizes the concentration-dependent bactericidal activity of aminoglycosides, while potentially limiting nephrotoxicity. Unfortunately, this dosing regimen is not recommended for burn patients due to concerns of sub-optimal levels and prolonged drug-free intervals arising from the changes in aminoglycoside pharmacokinetics in this population.

• Despite the recognized need for prospective study, the available literature is limited. This study was undertaken to determine the ability of a single tobramycin 10 mg/kg dose to achieve target extrapolated maximum (Cmax) and minimum (Cmin) concentrations in burn patients with less than 20% total body surface area (TBSA).

OBJECTIVES

• Evaluate the pharmacokinetic findings from our previously published work using a retrospective prospective study design.

• Characterize (i) baseline parameters, (ii) distribution of MICs, (iii) area-under-curve (AUC), (iv) half-life (T1/2).

• Prospectively determine the ability of a single tobramycin 10 mg/kg dose to achieve target extrapolated maximum (Cmax) and minimum (Cmin) concentrations in burn patients with less than 20% TBSA.

• Determine the optimal aminoglycoside dosing to achieve the highest probability of obtaining target concentrations while minimizing the risk of toxicity using Monte Carlo simulation (MCS).

METHODS

Study Design

Health Canada approved prospective, non-randomized, unblinded clinical trial (ClinicalTrials.gov NCT02269969)

Study Setting

Ross Tilley Burn Unit at Sunnybrook Health Sciences Centre, Toronto, Canada

Ontario’s largest burn unit with 11 adult beds servicing the Greater Toronto area and all of the province

Patient Population

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Adult burn patient (≥ 18 years)</td>
<td>- Active liver and/ or renal failure</td>
</tr>
<tr>
<td>- TBSA: Surface area (TBSA) ≤ 20%</td>
<td>- History of nephrotoxicity</td>
</tr>
<tr>
<td>- At least 48 hours after the time of initial burn event</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
<tr>
<td>- Had been receiving antibiotic therapy for at least 24 hours</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
<tr>
<td>- Documented history of coexisting or potential wound infection</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
<tr>
<td>- Creatinine clearance ≥ 50 mL/min</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
<tr>
<td>- Requiring any modality of dialysis</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
<tr>
<td>- No history of alcohol abuse or use of medications known to affect aminoglycosides</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
<tr>
<td>- Known diagnosis of Parkinson’s disease or nephrotoxic greasy</td>
<td>- Known allergy to aminoglycosides</td>
</tr>
</tbody>
</table>

Analysis

- One or two compartment two stage analysis to determine PK parameters (Vd, Cl, T1/2).
- Univariate and multiple variable regression to determine covariates of Vd and Cl.
- MCS to evaluate the probability of obtaining target maximum concentration (Cmax) ≤ 20 mg/L and peak to MIC ratio of >10 in burn patients.
- Aminoglycoside Pharmacokinetics and Optimal Once Daily Dosing in Burn Patients: A Prospective Study

Intervention

- Aminoglycoside trough sampling (i.e. c. 12 hours post dose) dosing weight of aminoglycosides, and peak and trough levels from the 7 patients that achieved target Cmax.
- Aminoglycoside trough sampling (i.e. c. 12 hours post dose) dosing weight of aminoglycosides, and peak and trough levels from the 7 patients that achieved target Cmax.
- Aminoglycoside trough sampling (i.e. c. 12 hours post dose) dosing weight of aminoglycosides, and peak and trough levels from the 7 patients that achieved target Cmax.

- MCS: to estimate the probability of obtaining target maximum concentration (Cmax) of > 20 mg/L and peak to MIC ratio of >10 in burn patients.

RESULTS

Objectives

Methodology

Results

Discussion

Conclusion

Future work

- MCS: to estimate the probability of obtaining target maximum concentration (Cmax) of > 20 mg/L and peak to MIC ratio of >10 in burn patients.

- Larger sample size can improve the confidence of this study.

- Exposed population to include TBSA > 20%. Further examination of target extrapolated maximum (Cmax) and minimum (Cmin) concentrations will be required.

- Clinical trial of once daily aminoglycoside dosing in the burn population.